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Abstract

Background.—Children living with human immunodeficiency virus (HIV) (CLHIV) receiving 

antiretroviral therapy (ART) in resource-limited settings are susceptible to high rates of acquired 

HIV drug resistance (HIVDR), but few studies include children initiating age-appropriate World 

Health Organization (WHO)-recommended first-line regimens. We report data from a cohort of 

ART-naive South African children who initiated first-line ART.

Methods.—ART-eligible CLHIV aged 0–12 years were enrolled from 2012 to 2014 at 5 public 

South African facilities and were followed for up to 24 months. Enrolled CLHIV received 

standard-of-care WHO-recommended first-line ART. At the final study visit, a dried blood spot 

sample was obtained for viral load and genotypic resistance testing.

Results.—Among 72 successfully genotyped CLHIV, 49 (68.1%) received ABC/3TC/LPV/r, 

and 23 (31.9%) received ABC/3TC/EFV. All but 2 children on ABC/3TC/LPV/r were <3 years, 

and all CLHIV on ABC/3TC/EFV were ≥3 years. Overall, 80.6% (58/72) had at least one drug 

resistance mutation (DRM). DRMs to nonnucleoside reverse transcriptase inhibitors (NNRTIs) 
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and nucleoside reverse transcriptase inhibitors (NRTIs) were found among 65% and 51% of all 

CLHIV, respectively, with no statistical difference by ART regimen. More CLHIV on ABC/3TC/

EFV, 47.8% (11/23), were found to have 0 or only 1 effective antiretroviral drug remaining in their 

current regimen compared to 8.2% (4/49) on ABC/3TC/LPV/r.

Conclusions.—High levels of NNRTI and NRTI DRMs among CLHIV receiving 

ABC/3TC/LPV/r suggests a lasting impact of failed mother-to-child transmission interventions 

on DRMs. However, drug susceptibility analysis reveals that CLHIV with detectable viremia on 

ABC/3TC/LPV/r are more likely to have maintained at least 2 effective agents on their current 

HIV regimen than those on ABC/3TC/EFV.
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In 2018, 1.7 million children under the age of 15 years were living with human 

immunodeficiency virus (HIV) (CLHIV), and only 54% were receiving antiretroviral 

therapy (ART) [1, 2]. Among children on treatment, data suggests many are not achieving 

viral suppression (VS). A pooled analysis of CLHIV on ART in resource-limited settings 

showed only 73% achieved a viral load (VL) <1000 copies/mL by 12 months on ART [3]. 

Population-based HIV Impact Assessments conducted in 6 sub-Saharan African countries 

revealed a low pooled estimate of viral suppression (VS) of 53% among CLHIV on ART, 

ranging from 30.4% in Tanzania to 73.9% in Eswatini [4, 5].

One critical driver of poor VS in children is the continued use of suboptimal ART 

regimens [3]. The World Health Organization (WHO) has recommended the use of 

lopinavir/ritonavir (LPV/r)-based first-line ART for CLHIV <3 years since 2010; however, 

use of nonnucleoside reverse transcriptase inhibitors (NNRTIs), such as nevirapine (NVP) 

and efavirenz (EFV), remains common [6]. Reasons for poor uptake of optimal pediatric 

ART include lack of palatable pediatric formulations, higher cost of protease inhibitors, 

and a scarcity of pediatric-trained clinicians which contributes to prolonged use of failing 

regimens in children [6–8].

High levels of pretreatment drug resistance (PDR) among CLHIV due to exposure 

to prevention of mother-to-child transmission (PMTCT) interventions underscores the 

importance of initiating an effective first-line ART regimen [7, 9]. A 2017 systematic 

literature review found 42.7% and 12.7% PDR among PMTCT-exposed and unexposed 

children, respectively, with most harboring NNRTI drug resistance mutations (DRMs) [7]. 

Two studies among South African children found similarly high rates of PDR, 53.0% and 

52.3%, with NNRTI DRMs being most common [10, 11]. Prior studies examining acquired 

drug resistance (ADR) in South African CLHIV revealed DRM in over 90% [12–15]. 

However, these studies included few ART-naive children initiating WHO-recommended 

first-line ART regimens. These findings emphasize the need to better understand the 

programmatic impact of optimal ART regimens on HIVDR among ART-naive CLHIV.

We report HIVDR in a cohort of ART-naive infants and children with detectable VL 

receiving first-line, WHO-recommended ART regimens in South Africa. We describe the 
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proportion of children with DRMs by antiretroviral (ARV) class and analyze current and 

alternate ARV susceptibility.

METHODS

Study Design and Procedures

Data came from a previously described observational cohort of CLHIV receiving routine 

HIV services at 5 health facilities in South Africa [16]. ART-naive CLHIV from birth 

to 12 years were enrolled at ART eligibility (identified by healthcare providers). South 

Africa ART guidelines changed during the study. 2010 guidelines called for ART for 

(1) all children <12 months; (2) children 1–5 years with WHO clinical stage 3 or 4, 

CD4+ cell count (CD4+) <25%, or absolute CD4+ ≤750 cells/mm3; and (3) children >5 

years with WHO stage 3 or 4 or CD4+ ≤350 cells/mm3. 2013 guidelines recommended 

ART for all children <5 years and those 5–15 years with WHO clinical stage 3 or 4 or 

CD4+ ≤350 cells/mm3 [17, 18]. The first-line regimen for children <3 years was abacavir 

(ABC), lamivudine (3TC), and LPV/r and for children ≥3 years, ABC, 3TC, and EFV. 

Viral load monitoring guidelines also changed from ART initiation, 6 and 12 months, and 

then annually (2010) to every 6-month VL testing for children <5 years (2013). After 

study enrollment, CLHIV were followed for up to 24 months. Caregivers provided informed 

consent and children ≥8 years provided assent.

During study follow-up, children received routine HIV standard of care following South 

African guidelines, including ART, opportunistic infection management, and laboratory 

monitoring (the study did not provide medical care). Additionally, enrolled children attended 

quarterly study visits, which included caregiver questionnaires, additional physical exams, 

and blood specimen collection. Children who missed study visits were traced through phone 

calls and home visits. Ethical review was received from Columbia University, University 

of Cape Town, East London Hospital Complex Research Ethics Committee, Walter Sisulu 

University Health Research Ethics Committee, and Eastern Cape Department of Health. The 

protocol was reviewed in accordance with the Centers for Disease Control and Prevention 

(CDC) human research protection procedures and was determined to be research, but CDC 

investigators did not interact with human subjects or have access to identifiable data or 

specimens for research purposes.

Study data were abstracted from medical records of enrolled children. Enrollment 

characteristics included age at diagnosis as reported by caregivers and recorded in clinic 

charts, hospitalization at enrollment, tuberculosis (TB) at enrollment (up to 90 days prior), 

history of TB (diagnosis in chart >90 days prior), weight-for-age z-score, CD4+ and VL 

(up to 1 year prior or 1 month after enrollment), maternal age, and history of PMTCT 

interventions. The study also collected information on routinely conducted laboratory tests, 

including CD4+ (FC500 Cytomics MPL 1, Beckman Coulter) and VL (Cobas© 6800/8800, 

Roche Molecular Systems), conducted at the National Health Laboratory Services (NHLS) 

at Livingstone and Dora Nginza Hospitals in Port Elizabeth and at Frere and Cecilia 

Makiwane Hospitals in East London. At the final study visit 12–24 months postenrollment, 

two dried blood spot (DBS) cards for VL and HIVDR testing were collected.

Hackett et al. Page 3

Clin Infect Dis. Author manuscript; available in PMC 2024 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIV-1 Viral Load Testing and Drug Resistance Genotyping

DBS cards were shipped and stored at −80°C at the Molecular Haematology and Virology 

Laboratory at Charlotte Maxeke Johannesburg Academic Hospital under the University 

of the Witwatersrand and NHLS. In 2016, specimens were shipped to the International 

Laboratory Branch (ILB), Division of Global HIV and TB at CDC, Atlanta, GA, USA. Viral 

load testing was performed on the DBS samples at the ILB using the Abbott RealTime 

HIV-1 VL optimized one spot assay on the fully automated Abbott m2000 platform (Abbott 

Molecular Inc.) [19]. Data on VS during study follow-up have been previously reported [16].

All DBS samples with VL results above the Abbott DBS VL lower limit of detection 

(839 copies/mL) were HIV-1 genotyped. One DBS spot per sample was used for nucleic 

acid extraction using the NucliSENS on easyMAG platform (Biomerieux), following the 

manufacturer’s instructions [20]. Genotyping of the protease and reverse transcriptase 

regions of the HIV-1 pol gene was performed using the Thermo Fisher (TF) HIV-1 

Genotyping Kit (Life Technologies). The TF kit was developed based on a broadly sensitive 

CDC in-house genotyping assay [21].

In brief, a 1084 base-pair segment of the 5’ region of the pol gene covering the protease and 

5’ segment of the reverse transcriptase (RT) region was generated by reverse transcriptase 

polymerase chain reaction (RT-PCR) and nested PCR using the kit Amplification Module. 

The purified PCR fragment was then sequenced using the kit Cycle Sequencing Module and 

analyzed on the ABI Prism™ 3730 Genetic Analyzer (Applied Biosystems). The customized 

ReCALL (version 2.27) software program was used to edit the raw sequences and generate 

consensus sequences, while sequence quality assurance was performed on each sequence 

using MEGA [22, 23]. HIV DRMs and drug susceptibility profiles were generated using 

Stanford University’s HIVdb algorithm (version 8.4) [24]. HIV-1 subtypes were determined 

by REGA HIV-1 Subtyping Tool version 3 [25].

Data Analyses

Children were included in this analysis if they had an end-of-study DBS specimen with a 

detectable VL and a successfully amplified genotyping product. Enrollment characteristics 

were compared based on first-line regimen type using Pearson Chi-square tests for 

categorical variables (or Fisher’s exact tests) and Wilcoxon signed rank tests for continuous 

variables. HIVDR by DRM and drug class were described based on first-line ART regimen. 

Statistical analyses were performed using SAS 9.4 (SAS Institute Inc.). We also present data 

on drug susceptibility according to the HIVDR mutations identified. As facilities were not 

randomly selected and may not be representative of all facilities treating children in South 

Africa, inferences were limited to the included facilities.

RESULTS

Study Population and Participant Characteristics

The study enrolled 397 children <12 years, among whom 307 (77.3%) completed study 

follow-up; 35 (8.8%) children died, 49 (12.3%) withdrew due to changing care locations, 

and 6 (1.5%) were lost to follow-up. A total of 301 DBS specimens were collected, stored, 
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and shipped to the CDC laboratory. Four specimens had duplicate study IDs (only one 

of each was analyzed) and four specimens had >99% similarity in genotype results (all 

were excluded). VL testing was performed on 293 samples; among these, 95 (32.4%; 95% 

confidence interval [CI] = 27.1, 38.1) had a detectable VL, of which 72 (75.8%) were 

successfully sequenced and 23 (24.2%) failed to sequence. Among 293 unique children 

with specimen collection, 128 (43.7%) initiated ABC/3TC/EFV and 165 (56.3%) initiated 

ABC/3TC/LPV.

Among the 72 children with successful amplification, 49 (68.1%) initiated ABC/3TC/LPV/r 

and 23 (31.9%) ABC/3TC/EFV (Table 1). Among children who initiated ABC/3TC/LPV/r, 

95.9% (47/49) were <3 years, and all children who initiated ABC/3TC/EFV were 3–12 

years. At enrollment, 31.9% (23/72) of children were hospitalized, 22.2% (16/72) had 

TB, and 54.2% (39/72) had any maternal PMTCT exposure. Mothers of children on 

ABC/3TC/LPV/r were more likely to have received ART for PMTCT versus other or no 

PMTCT regimen compared to mothers of children on ABC/3TC/EFV (30.6% vs 4.4%; P = 

.0142) and to be the primary caregivers rather than grandmother or other caregiver (91.8% 

vs 65.2%; P = .0083). The median log VL at enrollment was significantly higher among 

children on ABC/3TC/LPV/r, 6.2 (interquartile range (IQR) 5.5–6.7), compared to 5.4 (IQR 

5.1–5.8) among children on ABC/3TC/EFV (P = .0037). The median time on ART at DBS 

sampling was 20 months (IQR 14–24) for children on ABC/3TC/LPV/r and 24 months (IQR 

14–24 months) for those on ABC/3TC/EFV (Table 1).

HIV Drug Resistance Results

Overall 80.6% (58/72; 95% CI = 69.5, 88.9) of children successfully genotyped had at least 

one DRM; 83.7% (41/49; 95% CI = 73.3, 94.0) on ABC/3TC/LPV/r and 73.9% (17/23; 95% 

CI = 51.6, 89.8) on ABC/3TC/EFV (Table 2). Nucleoside reverse transcriptase inhibitors 

(NRTI) mutations were found in 51.4% (37/72; 95% CI = 39.3, 63.4) of all children; 

51.0% (24/49; 95% CI = 34.4, 63.7) on ABC/3TC/LPV/r and 52.2% (12/23; 95% CI = 

30.6, 73.2) on ABC/3TC/EFV. Among children with any NRTI resistance on EFV-based 

regimens, 91.7% (11/12) had any resistance to 3TC and ABC compared to 88.0% (22/25) 

of children on LPV/r-based regimens. DRMs to NNRTIs were most common and occurred 

in 65.3% of all children (47/72; 95% CI = 53.1, 76.1), with almost identical results by 

regimen (65.3%, 32/49 vs 65.2%, 15/23, 95% CI = 50.4, 78.3 and 42.7, 83.6, respectively) 

(Table 2). Among children with any NNRTI resistance on EFV-based regimens, 80% (12/15) 

had any resistance to NVP and EFV compared to 87.5% (28/32) on LPV/r-based regimens 

(Figure 1). Dual-class resistance to NNRTIs and NRTIs was 32.6% (16/49; 95% CI = 20.0, 

47.5) among those on ABC/3TC/LPV/r compared to 43.5% (10/23; 95% CI = 23.2, 65.5) 

on ABC/3TC/EFV. Among all children with DRMs, 15.5% (9/58) had 2 or more NRTI 

mutations, 39.7% (23/58) had 2 or more NNRTI mutations, and 1.7% (1/58) had multiple PI 

mutations (not shown).

The M184V mutation was the most common mutation among all children (45.8%, 33/72). 

The most common NNRTI mutation was K103N (33.3%, 24/72) and was more common 

among children on ABC/3TC/LPV/r (38.8%, 19/49) than on ABC/3TC/EFV (21.7%, 5/23). 

Among the 19 children on ABC/3TC/LPV/r with a K103N mutation, 78.9% (15/19) 
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reported exposure to maternal PMTCT compared to 21.1% (4/19) who reported no known 

PMTCT exposure. Among 5 children with a K103N mutation on ABC/3TC/EFV, 80% (4/5) 

reported no known PMTCT exposure, and 1 child had missing PMTCT data. Thymidine 

analog mutations were found in 8.3% (6/72) of children. Only 2.8% (2/72) of children, 

both on ABC/3TC/LPV/r, had PI mutations, and only one of these children had resistance 

to LPV/r. One of these children reported concurrent TB treatment, and the other stopped 

treatment within a month of starting and did not restart. The prevalence of each DRM is 

shown in Figure 2.

Drug susceptibility analysis among children with DRMs revealed high- and intermediate-

level NNRTI resistance in most children across both ART regimens; 69.0% (40/58) had 

high-level resistance to NVP, while 58.6% (34/58) had high-level and 10.3% (6/58) 

intermediate-level resistance to EFV. High-level resistance to 3TC/FTC was present in 

56.9% (33/58) of children, while only 12.1% (7/58) showed high- or intermediate-level 

resistance to ABC. High- or intermediate-level resistance to ABC was lower among children 

on ABC/3TC/LPV/r (7.3%, 3/41) than those on ABC/3TC/EFV (23.5%, 4/17) (Figure 1). 

Figure 1 also demonstrates the variable patterns of drug susceptibility based on individual 

children’s DRM combinations and reveals that no children on either EFV- or LPV/r-based 

therapy selected mutations consistent with zidovudine resistance, and only one child had 

intermediate- or high-level resistance to tenofovir.

Drug susceptibility results among all children with detectable VL were used to assess the 

number of potentially effective drugs in a child’s current ART regimen, with ARV drugs 

without any related DRMs or DRMs conferring potential or low-level resistance classified 

as effective. Among children on ABC/3TC/LPV/r, 8.2% (4/49) had one effective ARV (3 

had LPV/r and 1 had ABC), 36.7% (18/49) had 2 effective drugs (all LPV/r and ABC), and 

55.1% (27/49) had 3 effective ARVs in their current regimen (Figure 3). Among children 

on ABC/3TC/EFV, 13.0% (3/23) had no effective ARVs, 34.8% (8/23) had one effective 

ARV, 8.7% (2/23) had 2 effective ARVs (both had ABC and 3TC), and 43.5% (10/23) had 3 

effective ARVs in their current regimen (Figure 3).

CONCLUSIONS

This report describes HIVDR among South African children recently initiated on age-

appropriate WHO-recommended first-line ART. Overall, we found high rates of DRMs, 

with 80.6% of children with detectable viremia having at least one DRM and 38.9% with 

dual-class HIVDR. As previously described, we found low rates of PI resistance, but high 

rates of NRTI and NNRTI mutations among children on both regimens, likely representing 

both ADR and PDR selected by prior exposure to PMTCT interventions. We also found 

that the vast majority (91.8%) of children with detectable VL on ABC/3TC/LPV/r retained 

at least 2 active ARVs. These novel data are meaningful as countries develop optimized 

pediatric ART strategies utilizing the limited pediatric ARVs currently available.

As previously reported, we found high rates of NNRTI and NRTI resistance among children 

with detectable viremia, with K103N and M184V the most common mutations in each 

class, respectively [7, 12, 26–29]. Novel to our study is the finding that there was no 
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difference in the proportion of children with NNRTI DRMs by regimen. The high proportion 

of children on LPV/r-based ART in our analysis with NNRTI resistance (65.3%, 32/49) 

is almost double that reported from prior studies [12, 13, 30, 31]. One possible cause 

is the high rate of ARV exposure from PMTCT (73.5% of mothers received ARVs for 

PMTCT including single dose NVP, zidovudine and NVP, or ART), which are associated 

with high PDR rates in infants [7]. While our findings are limited by a lack of pretreatment 

DRM information and limited PMTCT history, 2 prior studies of PDR in newly-diagnosed 

HIV-infected infants in South Africa between 2010 and 2013 found NNRTI DRMs in 52% 

and 56.8% of infants, comparable to levels seen in our cohort [10, 11]. We hypothesize that 

NNRTI PDR mutations reemerged in the children on nonsuppressive PI-based ART.

PIs have been previously shown to have a high genetic barrier to resistance among children 

[12, 13, 30–32]; however, most existing data have included relatively small numbers of 

children on LPV/r with the WHO-recommended backbone of ABC+3TC. Our data, showing 

only 2 children with PI DRMs, further support the finding that LPV/r retains its high genetic 

barrier to resistance when paired with an ABC+3TC backbone. Of note, both children 

had a history of TB treatment. While we lack information on TB treatment regimens for 

these children, national guidelines called for super-boosting of LPV/r and no change for 

children on EFV-based ART regimens. It is possible that additional pill burden contributed 

to suboptimal adherence and drug–drug interactions between ARVs and TB medications 

could explain the resistance we identified [30, 33].

Our study includes DRM data on the largest cohort of children on WHO-recommended 

first-line ABC/3TC/LPV/r regimen to date. Drug susceptibility results showed that over 90% 

of children with detectable viremia on ABC/3TC/LPV/r, retained at least 2 effective ARVs, 

including LPV/r and ABC (+/− 3TC) compared to less than half of those on ABC/3TC/EFV 

(47.8%) (Figure 3), suggesting that children on ABC/3TC/LPV/r could achieve VS with 

improved adherence to their current regimen. This finding is encouraging, as data show that 

few CLHIV with viral failure are being switched to second-line ART [34]. In comparison, 

our findings of high rates of EFV resistance suggest that children failing EFV-based ART 

would be less likely to suppress if maintained on the same regimen.

Critical to optimizing pediatric ART is the selection of the NRTI backbone. While 

ABC+3TC has been one of several first-line pediatric ART backbones since 2013, its 

inclusion as the only WHO-recommended first-line pediatric backbone in 2018 prompted 

scrutiny in light of ABC resistance in children [6]. In this cohort, only 7.3% (3/41) of 

children on ABC/3TC/LPV/r with any DRMs developed intermediate- or high-level ABC 

resistance compared to 23.5% (4/17) of children on ABC/3TC/EFV. The limited ABC 

resistance suggests it may remain an effective ARV for use in second-line pediatric ART 

regimens, however it also highlights the importance of routine VL monitoring and rapid 

transition to potent regimens when treatment failure is identified.

A key strength of our study is presentation of new data on DRMs in a large cohort of 

children initiating first-line in routine care settings in South Africa. Unlike findings from 

clinical trials, children in our study experienced a standard of care similar to those in other 

resource-limited settings. A limitation of the study is the lack of PDR and standardized VL 
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testing that would have allowed for DRM evaluation at the same time point after treatment 

initiation for all children. This constrains our ability to understand whether DRMs were 

transmitted or acquired and whether they occurred among children meeting WHO definition 

of virological failure (VL above 1000 copies/mL from 2 consecutive VL measurements in a 

3-month interval) [35]. Additionally, the small sample size of children with DRMs limited 

our ability to make statistical comparisons between the regimen groups.

In this cohort of South African children on WHO-recommended first-line ART regimens, 

the high levels of NNRTI and NRTI DRMs suggest a lasting impact of failed PMTCT 

interventions on DRMs, even among those on LPV/r-based regimens. Our data demonstrate 

superior susceptibility to the current treatment regimen of children with detectable 

viremia on ABC/3TC/LPV/r compared to ABC/3TC/EFV. Our findings also underscore 

the durability of ABC as part of the backbone of an LPV/r-based regimen and add to 

the growing body of literature demonstrating the urgent need for better ARV formulations 

and more robust, potent agents such as dolutegravir and ritonavir-boosted darunavir for the 

treatment of CLHIV.
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Figure 1. 
Heat map of HIV drug resistance and drug susceptibility among South African children 

0–12 years with detectable viremia (viral load >832 copies/mL) and successful amplification 

of dried blood spot samples by ART regimen (n = 72). Abbreviations: 3TC, lamivudine; 

ABC, abacavir; ART, antiretroviral therapy; AZT, zidovudine; EFV, efavirenz; HIV, human 

immunodeficiency virus; LPV/r, lopinavir/ritonavir.
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Figure 2. 
Major drug resistance mutations by ART regimen type among South African children 

on LPV/r- and EFV-based therapy in South Africa from 2012–2015. Abbreviations: 3TC, 

lamivudine; ABC, abacavir; ART, antiretroviral therapy; AZT, zidovudine; EFV, efavirenz; 

LPV/r, lopinavir/ritonavir; NNRTIs, nonnucleoside reverse transcriptase inhibitors; NRTIs, 

nucleoside reverse transcriptase inhibitors..
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Figure 3. 
Effectiveness of current ART regimen among South African children 0–12 years living with 

HIV with detectable viremia (viral load >832 copies/mL) and successful amplification of 

dried blood spot samples (n = 72). Abbreviations: 3TC, lamivudine; ABC, abacavir; ART, 

antiretroviral therapy; ARVs, antiretrovirals; EFV, efavirenz; HIV, human immunodeficiency 

virus; LPV/r, lopinavir/ritonavir.
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